Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 172: 103893, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657898

RESUMEN

Chitin is an essential structural component of fungal cell walls composed of transmembrane proteins called chitin synthases (CHSs), which have a large range of reported effects in ascomycetes; however, are poorly understood in agaricomycetes. In this study, evolutionary and molecular genetic analyses of chs genes were conducted using genomic information from nine ascomycete and six basidiomycete species. The results support the existence of seven previously classified chs clades and the discovery of three novel basidiomycete-specific clades (BI-BIII). The agaricomycete fungus Pleurotus ostreatus was observed to have nine putative chs genes, four of which were basidiomycete-specific. Three of these basidiomycete specific genes were disrupted in the P. ostreatus 20b strain (ku80 disruptant) through homologous recombination and transformants were obtained (Δchsb2, Δchsb3, and Δchsb4). Despite numerous transformations Δchsb1 was unobtainable, suggesting disruption of this gene causes a crucial negative effect in P. ostreatus. Disruption of these chsb2-4 genes caused sparser mycelia with rougher surfaces and shorter aerial hyphae. They also caused increased sensitivity to cell wall and membrane stress, thinner cell walls, and overexpression of other chitin and glucan synthases. These genes have distinct roles in the structural formation of aerial hyphae and cell walls, which are important for understanding basidiomycete evolution in filamentous fungi.

2.
Fungal Genet Biol ; : 103890, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503389

RESUMEN

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.

3.
Appl Microbiol Biotechnol ; 108(1): 217, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372792

RESUMEN

Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.


Asunto(s)
Agaricales , Pleurotus , Pleurotus/genética , Agaricales/genética , Ciencia de los Materiales , Pared Celular , Barajamiento de ADN
4.
Fungal Biol ; 127(10-11): 1336-1344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37993245

RESUMEN

White-rot fungi secrete numerous enzymes involved in lignocellulose degradation. However, the secretory mechanisms or pathways, including protein synthesis, folding, modification, and traffic, have not been well studied. In the first place, few experimental tools for molecular cell biological studies have been developed. As the first step toward investigating the mechanisms underlying protein secretion, this study visualized organelles and transport vesicles involved in secretory mechanisms with fluorescent proteins in living cells of the white-rot fungus Pleurotus ostreatus (agaricomycete). To this end, each plasmid containing the expression cassette for fluorescent protein [enhanced green fluorescent protein (EGFP) or mCherry] fused with each protein that may be localized in the endoplasmic reticulum (ER), Golgi, or secretory vesicles (SVs) was introduced into P. ostreatus strain PC9. Fluorescent microscopic analyses of the obtained hygromycin-resistant transformants suggested that Sec13-EGFP and Sec24-EGFP visualize the ER; Sec24-EGFP, mCherry-Sed5, and mCherry-Rer1 visualize the compartment likely corresponding to early Golgi and/or the ER-Golgi intermediate compartment; EGFP/mCherry-pleckstrin homology (PH) visualizes possible late Golgi; and EGFP-Seg1 and mCherry-Rab11 visualize SVs. This study successfully visualized mitochondria and nuclei, thus providing useful tools for future molecular cell biological studies on lignocellulose degradation by P. ostreatus. Furthermore, some differences in the Golgi compartment or apparatus and the ER-Golgi intermediate of P. ostreatus compared to other fungi were also suggested.


Asunto(s)
Pleurotus , Pleurotus/metabolismo , Retículo Endoplásmico/metabolismo , Transporte Biológico
5.
Sci Rep ; 13(1): 11133, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429890

RESUMEN

Gene editing is a promising alternative to traditional breeding for the generation of new mushroom strains. However, the current approach frequently uses Cas9-plasmid DNA to facilitate mushroom gene editing, which can leave residual foreign DNA in the chromosomal DNA raising concerns regarding genetically modified organisms. In this study, we successfully edited pyrG of Ganoderma lucidum using a preassembled Cas9-gRNA ribonucleoprotein complex, which primarily induced a double-strand break (DSB) at the fourth position prior to the protospacer adjacent motif. Of the 66 edited transformants, 42 had deletions ranging from a single base to large deletions of up to 796 bp, with 30 being a single base deletion. Interestingly, the remaining 24 contained inserted sequences with variable sizes at the DSB site that originated from the fragmented host mitochondrial DNA, E. coli chromosomal DNA, and the Cas9 expression vector DNA. The latter two were thought to be contaminated DNAs that were not removed during the purification process of the Cas9 protein. Despite this unexpected finding, the study demonstrated that editing G. lucidum genes using the Cas9-gRNA complex is achievable with comparable efficiency to the plasmid-mediated editing system.


Asunto(s)
Agaricales , Reishi , Reishi/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Fitomejoramiento , ADN Mitocondrial , Ribonucleoproteínas/genética
6.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37173280

RESUMEN

First, we attempted to recombine the Shiitake (Lentinula edodes) pyrG (ura3) gene homologously by introducing a donor vector containing a carboxin resistance gene (lecbxR) flanked by homologous sequences of pyrG into protoplasts of the fungus. However, all the carboxin-resistant transformants only contained ectopic insertions of the exogenous gene and no homologous insertions. Agaricomycetes are generally known for their low efficiency of homologous recombination, and a similar result was shown for L. edodes. We then co-introduced a Cas9 plasmid vector containing a CRISPR/Cas9 expression cassette targeting pyrG and donor plasmid vector. As a result, ∆pyrG strains containing the expected homologous recombination were obtained. However, only two of the seven ∆pyrG strains had the Cas9 sequence; the others did not. Our results suggest that genome editing occurred via the transient expression of the CRISPR/Cas9 cassette in the Cas9 plasmid vector introduced into the fungal cell. Transforming pyrG into a ∆pyrG strain (strain I8) resulted in prototrophic strains with an efficiency of 6.5 strains/experiment.


Asunto(s)
Sistemas CRISPR-Cas , Hongos Shiitake , Hongos Shiitake/genética , Carboxina , Edición Génica/métodos , Marcación de Gen
7.
Environ Microbiol ; 25(10): 1909-1924, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218079

RESUMEN

Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Lignina/metabolismo , Sistemas CRISPR-Cas , Peroxidasas/genética , Peroxidasas/metabolismo , Pared Celular/metabolismo
8.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061783

RESUMEN

Hydrophobins are small-secreted proteins comprising both hydrophobic and hydrophilic parts, that can self-assemble into an amphiphilic film at the air-liquid interface. More than 20 hydrophobin genes have been estimated in the white-rot fungus Pleurotus ostreatus. In our previous studies, three hydrophobin genes were shown to be predominantly expressed under ligninolytic conditions, and only vmh3 was downregulated in both the delignification-deficient mutant Δgat1 and Δhir1 strains. Here, we focused on the function of the hydrophobin Vmh3 to clarify its physiological role in lignin degradation. When the hyphae were observed by transmission electron microscopy, deletion of vmh3 resulted in the disappearance of black aggregates at the interface between the cell wall and outer environment. Deletion of vmh3 resulted in reduced hydrophobicity when 0.2% sodium dodecyl sulfate was dropped onto the mycelial surface. These results suggest that Vmh3 functions on the cell surface and plays a major role in mycelial hydrophobization. Furthermore, the Δvmh3 strain showed a marked delay in lignin degradation on beech wood sawdust medium, while the production of lignin-modifying enzymes was not reduced. This study demonstrated, for the first time, the possible effect of hydrophobin on lignin degradation by a white-rot fungus.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37081785

RESUMEN

Hydrophobins, which are small-secreted proteins with both hydrophobic and hydrophilic parts, can self-assemble into an amphiphilic film at the air-water interface, helping the fungus to form aerial hyphae. In the agaricomycete Pleurotus ostreatus, more than 20 putative hydrophobin genes have been predicted. Of these, two hydrophobin genes, vmh2 and vmh3, are predominantly expressed in the vegetative mycelium. In this study, we focused on the functions of Vmh2 and Vmh3 in vegetative mycelia. Based on the observation of the mycelial cross-section by transmission electron microscopy and the disappearance time of water droplets on the mycelial surface, Vmh2 and Vmh3 were considered essential for the maintenance of the surface hydrophobicity of the mycelium. The Δvmh3 and Δvmh2Δvmh3 strains exhibited relatively slower aerial mycelia formation on a liquid medium, and no significant alteration was observed in Δvmh2 strains. Only the Δvmh3 and Δvmh2Δvmh3 strains grew slower than the wild-type strain under stress conditions involving SDS and H2O2 on agar plates. This study revealed possible distinct roles for these hydrophobins in stress resistance. These results suggest that Agaricomycetes, including P. ostreatus, have evolved to possess multiple different hydrophobins as a means of adapting to various environments.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Peróxido de Hidrógeno/metabolismo , Micelio/genética , Micelio/metabolismo , Hifa/genética , Agua/química , Proteínas Fúngicas/metabolismo
10.
Environ Microbiol ; 25(8): 1393-1408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36959722

RESUMEN

White-rot fungi efficiently degrade wood lignin; however, the mechanisms involved remain largely unknown. Recently, a forward genetics approach to identify several genes in Pleurotus ostreatus (Agaricales) in which mutations cause defects in wood lignin degradation was used. For example, pex1 encodes a peroxisome biogenesis factor and gat1 encodes a putative Agaricomycetes-specific DNA-binding transcription factor. In this study, we examined the effects of single-gene mutations in pex1 or gat1 on wood lignin degradation in another white-rot fungus, Gelatoporia (Ceriporiopsis) subvermispora (Polyporales), to investigate conserved and derived degradation mechanisms in white-rot fungi. G. subvermispora pex1 and gat1 single-gene mutant strains were generated from a monokaryotic wild-type strain, FP-90031-Sp/1, using plasmid-based CRISPR/Cas9. As in P. ostreatus, Gsgat1 mutants were nearly unable to degrade lignin sourced from beech wood sawdust medium (BWS), while Gspex1 mutants exhibited a delay in lignin degradation. We also found that the transcripts of lignin-modifying enzyme-encoding genes, mnp4, mnp5, mnp6, mnp7, and mnp11, which predominantly accumulate in FP-90031-Sp/1 cultured with BWS, were greatly downregulated in Gsgat1 mutants. Taken together, the results suggest that Gat1 may be a conserved regulator of the ligninolytic system of white-rot fungi and that the contribution of peroxisomes to the ligninolytic system may differ among species.


Asunto(s)
Pleurotus , Polyporales , Lignina/metabolismo , Sistemas CRISPR-Cas , Polyporales/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
11.
Foods ; 12(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36765994

RESUMEN

The spore powder of Ganoderma lucidum (G. lucidum) has been proven to have a variety of pharmacological activities, and it has become a new resource for the development of health products and pharmaceuticals. However, the scarcity of natural resources, strict growth conditions and difficulty in controlling the stable yield, and quality of different culture batches seriously limit the development and utilization of G. lucidum spore powder. In the present study, the strain with the highest spore powder yield, G0109, was selected as the original strain to generate mutants of G. lucidum using ultraviolet ray irradiation. A total of 165 mutagenic strains were obtained, and fifty-five strains were chosen for the cultivation test. Importantly, one mutagenic strain with high spore powder yield and strong resistance to undesired microorganisms was acquired and named strain UV119. More cultivations demonstrated that the fruiting body and basidiospore yields from UV119 were, respectively, 8.67% and 19.27% higher than those of the parent (G0109), and the basidiospore yield was 20.56% higher than that of the current main cultivar "Longzhi No.1". In conclusion, this study suggested that ultraviolet ray irradiation is an efficient and practical method for Ganoderma strain improvement and thus provided a basis for the development and application of G. lucidum spore production and outstanding contributions to the rapid development of the G. lucidum industry.

12.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36812945

RESUMEN

CRISPR/Cas9 has potential for efficient molecular breeding. Recently, a foreign-DNA-free gene-targeting technology was established by introducing a preassembled Cas9 ribonucleoprotein (RNP) complex into the oyster mushroom Pleurotus ostreatus. However, the target gene was restricted to such a gene like pyrG, since screening of a genome-edited strain was indispensable and could be performed via examination of 5-fluoroorotic acid (5-FOA) resistance caused by the disruption of the target gene. In this study, we simultaneously introduced the Cas9 RNP complex targeting fcy1, a mutation that conferred P. ostreatus resistance to 5-fluorocytosine (5-FC), together with that targeting pyrG. A total of 76 5-FOA resistant strains were isolated during the first screening. Subsequently, a 5-FC resistance examination was conducted, and three strains exhibited resistance. Genomic PCR experiments followed by DNA sequencing revealed that mutations were successfully introduced into fcy1 and pyrG in the three strains. The results indicated that double gene-edited mutants could be obtained in one experiment employing 5-FOA resistance screening for strains with Cas9 RNP incorporation. This work may pave the way for safe CRISPR/Cas9 technology to isolate mutant strains in any gene of interest without an ectopic marker gene.


Asunto(s)
Agaricales , Pleurotus , Edición Génica/métodos , Pleurotus/genética , Pleurotus/metabolismo , Agaricales/genética , Sistemas CRISPR-Cas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Marcación de Gen
13.
Sci Adv ; 9(3): eade4809, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652525

RESUMEN

The carnivorous mushroom Pleurotus ostreatus uses an unknown toxin to rapidly paralyze and kill nematode prey upon contact. We report that small lollipop-shaped structures (toxocysts) on fungal hyphae are nematicidal and that a volatile ketone, 3-octanone, is detected in these fragile toxocysts. Treatment of Caenorhabditis elegans with 3-octanone recapitulates the rapid paralysis, calcium influx, and neuronal cell death arising from fungal contact. Moreover, 3-octanone disrupts cell membrane integrity, resulting in extracellular calcium influx into cytosol and mitochondria, propagating cell death throughout the entire organism. Last, we demonstrate that structurally related compounds are also biotoxic to C. elegans, with the length of the ketone carbon chain being crucial. Our work reveals that the oyster mushroom has evolved a specialized structure containing a volatile ketone to disrupt the cell membrane integrity of its prey, leading to rapid cell and organismal death in nematodes.

14.
FEMS Microbiol Lett ; 369(1)2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36302144

RESUMEN

The white-rot fungus Pleurotus ostreatus is an agaricomycete that is frequently used in molecular genetics studies as many useful tools are applicable to the fungus. In particular, efficient gene targeting using homologous recombination and CRISPR/Cas9 enables the introduction of a mutation in the gene of interest for functional analysis. Multiple genes encoding various lignocellulose-degrading enzymes are predicted to be present in the genome; therefore, analyses of multiple-gene mutants are required to elucidate the mechanisms underlying lignocellulose degradation by P. ostreatus. Conventional tools for generating multiple-gene mutations in P. ostreatus are laborious and time-consuming. Therefore, more efficient and practical methods are needed. In this study, we introduced CRISPR/Cas9-assisted multiple-gene mutations using a polycistronic tRNA and CRISPR guide RNA approach. The frequency (triple-gene mutation in fcy1, vp2, and 62347) was only 3.3% when a tetracistronic tRNA-sgRNA containing four different sgRNAs targeting fcy1, vp2, vp3, or 62347 was expressed. It increased to 20% (triple-gene mutation in vp1, vp2, and vp3) after a tricistronic tRNA-sgRNA was expressed with replaced/modulated promoter and tRNA sequences. This study demonstrated, for the first time, the applicability of a strategy to induce multiple-gene mutations in P. ostreatus in a transformation experiment.


Asunto(s)
Pleurotus , ARN Pequeño no Traducido , Marcación de Gen , Mutación , Pleurotus/genética , Pleurotus/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Pequeño no Traducido/genética
15.
J Biol Chem ; 298(11): 102507, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122804

RESUMEN

1-Octen-3-ol is a volatile oxylipin found ubiquitously in Basidiomycota and Ascomycota. The biosynthetic pathway forming 1-octen-3-ol from linoleic acid via the linoleic acid 10(S)-hydroperoxide was characterized 40 years ago in mushrooms, yet the enzymes involved are not identified. The dioxygenase 1 and 2 genes (Ccdox1 and Ccdox2) in the mushroom Coprinopsis cinerea contain an N-terminal cyclooxygenase-like heme peroxidase domain and a C-terminal cytochrome P450-related domain. Herein, we show that recombinant CcDOX1 is responsible for dioxygenation of linoleic acid to form the 10(S)-hydroperoxide, the first step in 1-octen-3-ol synthesis, whereas CcDOX2 conceivably forms linoleic acid 8-hydroperoxide. We demonstrate that KO of the Ccdox1 gene suppressed 1-octen-3-ol synthesis, although added linoleic acid 10(S)-hydroperoxide was still efficiently converted. The P450-related domain of CcDOX1 lacks the characteristic Cys heme ligand and the evidence indicates that a second uncharacterized enzyme converts the 10(S)-hydroperoxide to 1-octen-3-ol. Additionally, we determined the gene KO strain (ΔCcdox1) was less attractive to fruit fly larvae, while the feeding behavior of fungus gnats on ΔCcdox1 mycelia showed little difference from that on the mycelia of the WT strain. The proliferation of fungivorous nematodes on ΔCcdox1 mycelia was similar to or slightly worse than that on WT mycelia. Thus, 1-octen-3-ol seems to be an attractive compound involved in emitter-receiver ecological communication in mushrooms.


Asunto(s)
Agaricales , Dioxigenasas , Oxigenasas/metabolismo , Ácido Linoleico , Peróxido de Hidrógeno , Dioxigenasas/genética , Octanoles/metabolismo , Agaricales/genética , Agaricales/metabolismo , Etanol , Hemo
16.
FEMS Microbiol Lett ; 369(1)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36001999

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.


Asunto(s)
Sistemas CRISPR-Cas , Pleurotus , Edición Génica/métodos , Marcación de Gen , Fitomejoramiento , Pleurotus/genética
17.
Appl Microbiol Biotechnol ; 106(17): 5575-5585, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902408

RESUMEN

Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Plásmidos , Polyporales , ARN Pequeño no Traducido/genética
18.
Environ Microbiol ; 23(11): 7009-7027, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34622510

RESUMEN

The transcriptional expression pattern of lignocellulolytic enzyme-encoding genes in white-rot fungi differs depending on the culture conditions. Recently, it was shown that 13 putative cellulolytic enzyme-encoding genes were significantly upregulated in most Pleurotus ostreatus ligninolysis-deficient mutant strains on beech wood sawdust medium. However, the mechanisms by which this transcriptional shift is triggered remain unknown. In this study, we identified one mechanism. Our previous study implied that histone H3 N-dimethylation at lysine 4 level possibly affects the shift; therefore, we analysed the expression pattern in the disruptants of P. ostreatus ccl1, which encodes a putative component of the COMPASS complex mediating the methylation. The results showed upregulation of 5 of the 13 cellulolytic enzyme-encoding genes. We also found that rho1b, encoding a putative GTPase regulating signal transduction pathways, was upregulated in the ccl1 disruptants and ligninolysis-deficient strains. Upregulation of at least three of the five cellulolytic enzyme-encoding genes was observed in rho1b-overexpressing strains but not in ccl1/rho1b double-gene disruptants, during the 20-day culture period. These results suggest that Rho1b may be involved in the upregulation of cellulolytic enzyme-encoding genes observed in the ccl1 disruptants. Furthermore, we suggest that Mpk1b, a putative Agaricomycetes-specific mitogen-activated protein kinase, functions downstream of Rho1b.


Asunto(s)
Fagus , Pleurotus , Lignina/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Regulación hacia Arriba , Madera/microbiología
19.
Fungal Genet Biol ; 154: 103599, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153439

RESUMEN

Understanding the molecular mechanisms controlling dikaryon formation in Agaricomycetes, which is basically controlled by A and B mating-type loci, contributes to improving mushroom cultivation and breeding. In Coprinopsis cinerea, various mutations in the SRY-type high mobility group protein-encoding gene, pcc1, were shown to activate the A-regulated pathway to induce pseudoclamp (clamp cells without clamp connection) and fruiting body formation in monokaryons. The formation of clamp cells was blocked in AmutBmut strain 326 with clp1-1 mutation in C. cinerea. However, considering the diverse mechanisms of sexual development among Agaricomycetes, it remains unclear whether similar phenotypes are also observed in clp1 or pcc1 mutants in cultivated mushrooms. Therefore, phenotypic analyses of Pleurotus ostreatus pcc1 or clp1 (Popcc1 or Poclp1) mutants generated using CRISPR/Cas9 were performed in this study. Plasmids with Cas9 expression cassette and different single guide RNAs targeting Popcc1 or Poclp1 were individually introduced into a monokaryotic P. ostreatus strain PC9 to obtain the mutants. Unlike in C. cinerea, the pseudoclamp cell was not observed in monokaryotic Popcc1 mutants, but it was observed after crossing two compatible strains with Popcc1 mutations. In Poclp1 mutants, dikaryosis was impaired as clamp cells were not observed after crossing, suggesting that Poclp1 functions may be essential for clamp cell formation, like in C. cinerea. These results provided a clue with respect to conserved and diverse mechanisms underlying sexual development in Agaricomycetes (at least between C. cinerea and P. ostreatus).


Asunto(s)
Proteínas Fúngicas/genética , Pleurotus/genética , Sistemas CRISPR-Cas , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos
20.
FEMS Microbiol Lett ; 368(13)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34156066

RESUMEN

Until recently, classical breeding has been used to generate improved commercial mushroom strains; however, classical breeding remains to be laborious and time-consuming. In this study, we performed gene mutagenesis using Cas9 ribonucleoprotein (Cas9 RNP) as a plasmid-free genome editing in Pleurotus ostreatus, which is one of the most economically important cultivated mushrooms. The pre-assembled Cas9/sgRNA targeting pyrG was introduced into protoplasts of a wild-type monokaryotic P. ostreatus strain PC9, which resulted in a generation of strains exhibiting resistance to 5-fluoroorotic acid. Small insertions/deletions at the target site were identified using genomic PCR followed by sequencing. The results showed Cas9 RNP-assisted gene mutagenesis could be applied for the molecular breeding in P. ostreatus and in other edible mushroom strains. Furthermore, gene disruption via split-marker recombination using the Cas9 RNP system was also successfully demonstrated in wild-type P. ostreatus PC9. This method could overcome the disadvantages of NHEJ-deficiency in conventional studies with gene targeting, and also difficulty in gene targeting in various non-model agaricomycetes.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas Fúngicas/metabolismo , Marcación de Gen/métodos , Pleurotus/genética , Recombinación Genética , Ribonucleoproteínas/metabolismo , Proteínas Fúngicas/genética , Edición Génica , Genoma Fúngico , Pleurotus/metabolismo , Ribonucleoproteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...